Guided Spatial Transformers for Facial Expression Recognition
نویسندگان
چکیده
Spatial Transformer Networks are considered a powerful algorithm to learn the main areas of an image, but still, they could be more efficient by receiving images with embedded expert knowledge. This paper aims improve performance conventional Transformers when applied Facial Expression Recognition. Based on Transformers’ capacity spatial manipulation within networks, we propose different extensions these models where effective attentional regions captured employing facial landmarks or visual saliency maps. specific information is then hardcoded guide transformations that best fit proposed for better recognition results. For this study, use two datasets: AffectNet and FER-2013. AffectNet, achieve 0.35% point absolute improvement relative traditional Transformer, whereas FER-2013, our solution gets increase 1.49% fine-tuned Affectnet pre-trained weights.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملfacial expression recognition based on structural changes in facial skin
facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. in recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. as machine vision and artificial intelligence advan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11167217